

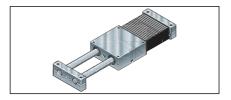
Linear Sets avec douilles à billes Super a , tandem

Linear Sets, R1085 fermés

Linear Sets, R1032 réglables

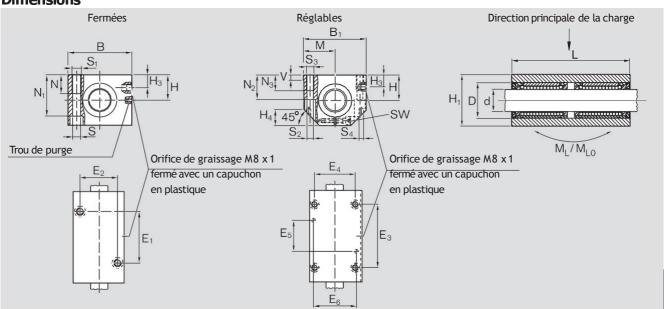
Conception

- Boîtier tandem de précision en mode de construction légère (en aluminium)
- Deux douilles à billes Super a
- Racleurs rapportés
- Bord de référence (pour Linear Set tandem, réglable)
- Relubrifiables



Arbre Ø d	Référence LSAT-ADD	Masse
(mm)		(kg)
12	R1085 612 20	0,27
16	R1085 616 20	0,41
20	R1085 620 20	0,72
25	R1085 625 20	1,35
30	R1085 630 20	2,01
40	R1085 640 20	3,67
50	R1085 650 20	6,30

Arbre Ø d	Référence LSATE-ADD	Masse
(mm)		(kg)
10	R1032 610 20	0,20
12	R1032 612 20	0,27
16	R1032 616 20	0,41
20	R1032 620 20	0,72
25	R1032 625 20	1,35
30	R1032 630 20	2,01
40	R1032 640 20	3,67
50	R1032 650 20	6,30


Existe également en tant que chariot linéaire. Voir le catalogue « Chariots linéaires », R310 3001.

Exemple d'explication de désignation abrégée

LS	Α	T	E	Α	20	DD
Linear Set	Aluminium	Tandem	Réglable	Super a	Ø 20	2 racleurs

Dimensions

9

Dimensions (mm)																										
Ød	D	H ¹)	H ₁	H ₃	M ₁)	В	B ₁	니	E ₁ 2)	E ₂ 2)	E ₃ 2)	E ₄ ²⁾	E ₅	E ₆	S 3)	S_1	S ₂ 3)	S ₃	S ₄ 4)	N	N ₁	N ₂	N ₃	V	SW	H ₄
		+0,00			±0,01				±0,15	±0,15	±0,15	±0,15														
		8																								
		-0,016																								
10	19	16	31,5	9	20,0	-	40	70	-	-	52	29	20	31	-	-	4,3	М5	4	-	-	15,0	11	5,0	2,5	10
12	22	18	35,0	10	21,5	42	43	76	40	30	56	32	24	34	5,3	М6	4,3	М5	4	13	28	16,5	11	5,0	2,5	10
16	26	22	42,0	12	26,5	50	53	84	45	36	64	40	28	42	5,3	M6	5,3	М6	4	13	35	21,0	13	5,0	3,0	13
20	32	25	50,0	13	30,0	60	60	104	55	45	76	45	32	50	6,6	M8	6,6	M8	5	18	41	24,0	18	5,0	4,0	16
25	40	30	60,0	15	39,0	74	78	130	70	54	94	60	42	64	8,4	M10	8,4	M10	6	22	49	29,0	22	6,5	5,0	20
30	47	35	70,0	16	43,5	84	87	152	85	62	106	68	52	72	10,5	M12	8,4	M10	6	26	56	34,0	22	8,0	5,0	22
40	62	45	90,0	20	54,0	108	108	176	100	80	124	86	60	90	13,5	M16	10,5	M12	8	34	74	44,0	26	10,0	6,0	28
50	75	50	1 050,	20	66,0	130	132	224	125	100	160	108	80	108	13,5	M16		M16		34				, -		37
	Ød	Jeu r	adial (i	um)	Ca	pacit	és de	charg	e5) (N) (Couni	e de l	hasc	ulen	ent		1)	E11 31	tuatio	n sei	ree	(VISSE	e) þ	ar rap	borr.	

30 73	30 1 03	0, 20 0		227 123 10	0 100 100 00	/ 100 13,5 M10			
Ød	Jeu radia	I (µm)	Capacités de c	harge ⁵⁾ (N)	Couple de basculement (Nm)				
(mm)	R1085 Arbre h6	R1032	dyn. C	stat. C₀	dyn. M _L	stat. M _{L0}			
10	-		1 180	760	17	12			
12	+38 +10	h5	1 660	980	26	16			
16	+38 +10	un arbre l on serrée	2 430	1 660	18	13			
20	+43 +11	sur un ation s	4 010	2 680	84	54			
25	+43 +11	usine en situ	8 180	4 940	141	86			
30	+43 +11	ajustés sans jeu en usine sur un arbre (limite inférieure) en situation serrée	9 520	7 140	289	206			
40	+50 +12	ssans inférie	16 360	11 140	576	374			
50	+50 +12	ajusté (limite	23 930	16 560	1 097	725			

La détermination de la capacité de charge dynamique est basée sur une course de 100 000 mètres.

Si la base choisie est de 50 000 mètres, les valeurs ${\sf C}$ du tableau doivent être multipliées par 1,26.

au Ø d.

- 2) Diamètre de l'arbre 50 : tolérance ± 0,2
- 3) Vis de fixation IS O 4762-8.8.
- 4) Centrages pour trous borgnes.
- 5) Capacité de charge pour une charge centrée sur les deux douilles à billes. Les capacités de charge indiquées s'appliquent à la direction principale de la charge. Si la direction de la charge ne correspond pas à la direction principale de la charge, les capacités de charge doivent être multipliées par les facteurs suivants :

Ø d 10 à 16 : f = 0.82, $f_0 = 0.86$

Ø d 20 à 50 : f = 0.82, $f_0 = 0.78$

Instructions de lubrification pour le Linear Set R1085:

ne graisser qu'avec l'arbre monté, jusqu'à ce que de la graisse suinte par le trou de purge.